Paraxial ray tracing for atmospheric wave propagation

J. Virieux,1 N. Garnier,2,3 E. Blanc,3 and J.-X. Dessa4

Received 13 May 2004; revised 18 August 2004; accepted 27 September 2004; published 21 October 2004.

[1] Ray tracing for sonic wave propagation in a two-dimensional atmosphere structure is performed in the presence of spatially variable wind by using an Hamiltonian approach. Paraxial ray tracing is deduced by first-order perturbations. Using standard atmospheric data or illustrative models, we test numerically the Hamiltonian approach. The ray tracing allows accurate estimation of trajectories and associated travel-times as well as stable and accurate amplitude variations along a ray. Lateral variations of both sonic and wind velocity are important for quantitative evaluation of acoustic waves. Gradients of the wind field must be taken into account for precise quantification of ray trajectories and, consequently, for the localization of ground impacts, a key element for any microbarometric recording station. INDEX TERMS: 0689 Electromagnetics: Wave propagation (4275); 3367 Meteorology and Atmospheric Dynamics: Theoretical modeling; 3384 Meteorology and Atmospheric Dynamics: Waves and tides; 0350 Atmospheric Composition and Structure: Pressure, density, and temperature; 0399 Atmospheric Composition and Structure: General or miscellaneous. Citation: Virieux, J., N. Garnier, E. Blanc, and J.-X. Dessa (2004), Paraxial ray tracing for atmospheric wave propagation, Geophys. Res. Lett., 31, L20106, doi:10.1029/2004GL020514.

1. Introduction

[2] The international infrasound detection network dedicated to the control of the Comprehensive Test Ban Treaty (CTBT) has increased substantially the amount of data collected by micro-barometric stations or infrasonic arrays for the detection of eventual atmospheric explosions [Christie, 1999]. Different known sources of acoustic waves in the atmosphere exist as rockets or supersonic planes [Calais and Minster, 1996; Le Pichon et al., 2002a] meteorites [Le Pichon et al., 2002b] and solar eclipses [Farges et al., 2003]. Earthquakes may also excite acoustic waves in the atmosphere [Artru et al., 2001]. Consequently, we must improve our understanding of the acoustic wave propagation to interpret what we observe with different recording systems on the ground.

[3] The computation of sound wave travel-time and pressure amplitudes in the atmosphere differs significantly from computation in media (as the solid Earth or as different oceanic media) because the time-varying atmosphere properties have wide range of variation within the 200 km depth layer where acoustic waves propagate. It has been shown that the atmospheric wind, which is very strong in the stratosphere, may modify the wave propagation and change significantly the propagation azimuth [Le Pichon et al., 2002a]. Daily as well as seasonal variations are observed. Empirical atmospheric models using global databases obtained from radars, balloons, rockets and satellites provide temperature and wind profiles and their variations [Hedin et al., 1996]. This velocity description allows potentially accurate propagation modeling.

[4] Instead of solving complex fluid mechanics using numerical techniques as finite element/volume approaches which will be of little use for fast warning of possible dangerous sources, we shall consider asymptotic wave propagation. By doing so, we limit our simulation to relatively high frequency waves around few hertz (typically 5 Hz) where gravity influence could be neglected. Attenuation is not considered as well although it should be included in the future.

[5] Following a ray approach as already done for 1D layered structures [Garcés et al., 1998], we investigate the influence of varying sound and wind fields on both ray trajectories (and, consequently, on travel times) as well as on the amplitude of the pressure wave (and, consequently, on neighboring rays). Both geometrical and paraxial ray tracing will be considered for time and amplitude variations [Abdullaev, 1993].

2. Ray Tracing Equations in a Moving Medium

[6] We neglect gravitational effects in our high frequency approximation. A sound speed structure $c(x_i, x_j)$ is defined in a 2D Galilean Cartesian system (spherical effects are negligible for distances less than 500 km) where indexes i and j are for each coordinate we consider. The wind velocity $\mathbf{v}(x_i, x_j)$ varies only in space although time variation may be included if needed. Along rays, travel time $T(x_i, x_j, t)$ is defined by the Eikonal equation

$$
(\nabla T)^2 = \frac{1}{c^2(x_i, x_j)} (1 - \mathbf{v}(x_i, x_j) \cdot \nabla T)^2. \tag{1}
$$

[7] The differential equations for the position \mathbf{q}, the slowness vector $\mathbf{p} = \nabla T$ as well as the propagation time T may be expressed in a canonical form [Courant and John, 1966]:

$$
\frac{dq_i}{d\tau} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{d\tau} = -\frac{\partial H}{\partial q_i}, \quad dT = p_i \frac{\partial H}{\partial p_i}, \tag{2}
$$

where both the Hamiltonian function $H(\mathbf{q}, \mathbf{p}) = 1/2(\mathbf{p}^2 - u^2(\mathbf{q})^2)$ (1 - $\mathbf{p} \cdot \nabla(\mathbf{q})^2$) and the sampling parameter τ are defined. An important conservation law could be deduced from the Eikonal: $H = 0$ along an acoustic ray. We have introduced the sound slowness $u(\mathbf{q}) = 1/c(\mathbf{q})$. Each compo-
3. Test Example With Realistic Sound and Wind Profiles

Let us consider US Standard Atmosphere 1976 (USSA76) data for the sound celerity and wind data from an horizontal wind model [Hedin et al., 1996] (Figure 1). Both sound velocity and horizontal wind variations are layered structures while the vertical wind component is negligible.

Figure 1 shows the comparison of ray tracing (with and without horizontal wind) between Garcés et al. [1998] and our scheme. Differences in ray trajectories are quite small when no wind is present and are still negligible, although noticeable, when wind is present. These differences are coming essentially from different interpolation kernel of sound/wind velocity, especially when the ray is turning. Using the τ parameter instead of the z coordinate as sampling along the ray improves accuracy at turning points.

4. Laterally Varying Atmospheric Structure

Because the wind velocity is a vectorial field, ray tracing depends on both wind amplitude and direction with respect to ray directions. We consider two illustrative situations.

4.1. Wind Velocity Influence

Let us consider a simple unrealistic example for exhibiting the wind influence. For such illustration, a uniform sound celerity is considered where rays are straight lines in case of no winds. Let us assume a wind velocity with a fixed direction and an amplitude exponentially decaying from the center in (x, z) coordinates at $(-100 \text{ km}, 100 \text{ km})$ and $(100 \text{ km}, 100 \text{ km})$ with a maximal amplitude of 40 m/s. Arrows in Figure 2 show the direction of the wind. In spite of small amplitudes, the wind affects strongly ray trajectories when its direction is in the ray direction or in the opposite direction while little influence is observed for orthogonal ray directions. Focusing and defocusing by wind structures depend on the ray direction.

4.2. Wind Gradients Influence

We now consider the standard sound velocity profile from the USSA76 profile (Figure 1). Ray tracing using this profile with no wind is presented in the top panel of Figure 3. We introduce an exponentially decaying local perturbation of the horizontal wind velocity which affects ray trajectories (middle panel of Figure 3) although the wind perturbation stays small (an average value below 10 m/s over a distance of 20 km with a peak value at the center of 40 m/s). We also perform ray tracing while considering similar perturbation on the vertical wind velocity component (the horizontal component is set to zero) as displayed in the bottom panel of Figure 3. In both cases, the sampling by rays of the atmosphere is different and illustrates that we need to take into account wind effects.

This investigation of the influence of the wind velocity in atmospheric wave propagation shows that more precise models than the HWM93 [Hedin et al., 1996] are required for better quantitative ray trajectory estimation and for accurate travel-times estimations.

5. Paraxial Ray Tracing Equations in a Moving Medium

For computing the amplitude variation due to geometrical effects or equivalently the ray tube cross-section, we consider a slightly perturbed position $\mathbf{\tilde{q}}_0 + \delta \mathbf{\tilde{q}}$ with a slightly perturbed slowness vector $\mathbf{\tilde{p}}_0 + \delta \mathbf{\tilde{p}}$ as well as a...
performed along the ray. We define the point paraxial ray in to first-order and will stay constant while integration is Appendix A.

The quantity (in the slowness vector and not in the source position itself. critically and paraxial rays. The estimation of ray tube requires which could be solved by numerical means. Partial variations. Assuming that the flux of energy is preserved along a cross-section between rays as implied by the transport equation (thanks to Liouville theorem), i.e., that no energy leakage affects pressure estimation, the amplitude A is given by the expression $A(\tau) = E^{1/2}/2\pi r_0 \sqrt{\rho_0 u_0}$ where the energy E is expressed as $\rho_0 d\omega_0$ at the source and related to the amplitude A_0 estimated over a spherical shell of small radius r_0. The so-called KMAH is an integer equal to zero initially and which increases by one each time the ray hits a caustic [Chapman, 1985]. The density is denoted ρ_0 at the source and ρ_1 at the τ_1 position while the slowness is respectively given by ω_0 and ω_1.

For the USSA76 sound velocity reference profile, we have estimated ray amplitude variation using both a finite difference procedure (a shooting angle increment θ equal to 10^{-2} and 10^{-3} make the aside independent ray, called numerical ray, near the main ray) and the paraxial formulation which does not need any angle increment. A unique ray with a shooting angle of 37° is drawn without no wind and with a uniform horizontal wind of 20 m/s (Figure 4). The numerical ray stays nearby the paraxial ray even when artificial amplification of ray tube is performed: the caustic zone when these rays cross the central ray is shifted by more than 100 km after 300 km of propagating distance. Focusing and defocusing are observed until the ray reaches a caustic where the amplitude becomes infinite: amplitude is only accurately determined by the paraxial formulation near the caustic while the finite difference technique depends critically on the angle increment.

As opposed to the numerical strategy, the paraxial method is stable and faster in any case. Moreover, it allows continuous and local estimation of the amplitude along the ray and opens the road to the investigation of weak and strong non-linear effects when the sound velocity could depend on the amplitude of the wave vibration.

6. Ray Amplitude Estimations Using the Paraxial Ray: Ground Impact Analysis

The geometrical spreading may induce focusing and defocusing effects depending on the sound and wind spatial variations. The density is denoted ρ_0 at the source and ρ_1 at the τ_1 position while the slowness is respectively given by ω_0 and ω_1.

For the USSA76 sound velocity reference profile, we have estimated ray amplitude variation using both a finite difference procedure (a shooting angle increment θ equal to 10^{-2} and 10^{-3} make the aside independent ray, called numerical ray, near the main ray) and the paraxial formulation which does not need any angle increment. A unique ray with a shooting angle of 37° is drawn without no wind and with a uniform horizontal wind of 20 m/s (Figure 4). The numerical ray stays nearby the paraxial ray even when artificial amplification of ray tube is performed: the caustic zone when these rays cross the central ray is shifted by more than 100 km after 300 km of propagating distance. Focusing and defocusing are observed until the ray reaches a caustic where the amplitude becomes infinite: amplitude is only accurately determined by the paraxial formulation near the caustic while the finite difference technique depends critically on the angle increment.

6. Ray Amplitude Estimations Using the Paraxial Ray: Ground Impact Analysis

The geometrical spreading may induce focusing and defocusing effects depending on the sound and wind spatial variations. Assuming that the flux of energy is preserved along a cross-section between rays as implied by the transport equation (thanks to Liouville theorem), i.e., that no energy leakage affects pressure estimation, the amplitude A is given by the expression $A(\tau) = E^{1/2}/2\pi r_0 \sqrt{\rho_0 u_0}$ where the energy E is expressed as $\rho_0 d\omega_0$ at the source and related to the amplitude A_0 estimated over a spherical shell of small radius r_0. The so-called KMAH is an integer equal to zero initially and which increases by one each time the ray hits a caustic [Chapman, 1985]. The density is denoted ρ_0 at the source and ρ_1 at the τ_1 position while the slowness is respectively given by ω_0 and ω_1.

For the USSA76 sound velocity reference profile, we have estimated ray amplitude variation using both a finite difference procedure (a shooting angle increment θ equal to 10^{-2} and 10^{-3} make the aside independent ray, called numerical ray, near the main ray) and the paraxial formulation which does not need any angle increment. A unique ray with a shooting angle of 37° is drawn without no wind and with a uniform horizontal wind of 20 m/s (Figure 4). The numerical ray stays nearby the paraxial ray even when artificial amplification of ray tube is performed: the caustic zone when these rays cross the central ray is shifted by more than 100 km after 300 km of propagating distance. Focusing and defocusing are observed until the ray reaches a caustic where the amplitude becomes infinite: amplitude is only accurately determined by the paraxial formulation near the caustic while the finite difference technique depends critically on the angle increment.

As opposed to the numerical strategy, the paraxial method is stable and faster in any case. Moreover, it allows continuous and local estimation of the amplitude along the ray and opens the road to the investigation of weak and strong non-linear effects when the sound velocity could depend on the amplitude of the wave vibration.
have found as well that amplitude decay shows deterministic pattern making hope that statistical atmospheric models will be of interest for source estimation.

[25] Taking into account the impressive increase of infrasound measurements and the finer and finer description of the atmospheric properties, we believe that this interpretative tool will be useful for quantitative interpretation.

Appendix A: Partial Derivatives of the Hamiltonian

[26] Analytical expressions for the ray tracing and the paraxial ray tracing systems are

$$\frac{\partial H}{\partial t} = -\frac{1}{2} \Omega^2 \frac{\partial^2 u^2}{\partial q_i \partial q_j} + u^2 \Omega p_i \frac{\partial v_i}{\partial q_j} \quad \frac{\partial H}{\partial p_i} = p_i + u^2 \Omega v_i \quad (A1)$$

where we have written $\Omega = 1 - p_i v_i$ and used the Einstein notation, and

$$\frac{\partial^2 H}{\partial p_i \partial p_j} = \delta_{ij} - v_j v_i \frac{1}{u^2} \frac{\partial^2 u^2}{\partial q_i \partial q_j} \quad \frac{\partial^2 H}{\partial q_i \partial q_j} = \frac{1}{2} \Omega^2 \frac{\partial^2 u^2}{\partial q_i \partial q_j} + \Omega \frac{\partial^2 v_i}{\partial q_i \partial q_j} p_i + \Omega \frac{\partial^2 p_i}{\partial q_i \partial q_j} v_i \quad \frac{\partial^2 H}{\partial q_i \partial p_j} = -\frac{1}{u^2} \left(\frac{\partial p_i}{\partial q_j} \frac{\partial v_i}{\partial q_j} + \frac{\partial v_i}{\partial q_j} \frac{\partial p_i}{\partial q_j} + u^2 \Omega p_i \frac{\partial^2 v_i}{\partial q_j \partial q_j} \right) \quad (A2)$$

[27] The Hamiltonian formulation allows a systematic construction of the system of partial differential equations.

[28] Acknowledgments. Many thanks to Alexis Le Pichon for the Garce`s ray tracing software called HAWAI and to Maud Barthelémy for a preliminary work. Careful reviews by Juliette Artru and Bernard Minster have improved the manuscript. Partial financial support has been provided by DASE/CEA through contract n° 460009 3805/P6H53. Contribution Géosciences Azur n° 536.

References

Abdullayev, S. (1993), Chaos and Dynamics of Rays in Waveguide Media, Gordon and Breach, Newark, N. J.

Garce`s, M., R. Hansen, and K. Lindquist (1998), Traveltimes for infrasonic waves and sound measurements and the finer and finer description of the atmospheric properties, we believe that this interpretative tool will be useful for quantitative interpretation.

Appendix A: Partial Derivatives of the Hamiltonian

[26] Analytical expressions for the ray tracing and the paraxial ray tracing systems are

$$\frac{\partial H}{\partial t} = -\frac{1}{2} \Omega^2 \frac{\partial^2 u^2}{\partial q_i \partial q_j} + u^2 \Omega p_i \frac{\partial v_i}{\partial q_j} \quad \frac{\partial H}{\partial p_i} = p_i + u^2 \Omega v_i \quad (A1)$$

where we have written $\Omega = 1 - p_i v_i$ and used the Einstein notation, and

$$\frac{\partial^2 H}{\partial p_i \partial p_j} = \delta_{ij} - v_j v_i \frac{1}{u^2} \frac{\partial^2 u^2}{\partial q_i \partial q_j} \quad \frac{\partial^2 H}{\partial q_i \partial q_j} = \frac{1}{2} \Omega^2 \frac{\partial^2 u^2}{\partial q_i \partial q_j} + \Omega \frac{\partial^2 v_i}{\partial q_i \partial q_j} p_i + \Omega \frac{\partial^2 p_i}{\partial q_i \partial q_j} v_i \quad \frac{\partial^2 H}{\partial q_i \partial p_j} = -\frac{1}{u^2} \left(\frac{\partial p_i}{\partial q_j} \frac{\partial v_i}{\partial q_j} + \frac{\partial v_i}{\partial q_j} \frac{\partial p_i}{\partial q_j} + u^2 \Omega p_i \frac{\partial^2 v_i}{\partial q_j \partial q_j} \right) \quad (A2)$$

[27] The Hamiltonian formulation allows a systematic construction of the system of partial differential equations.

[28] Acknowledgments. Many thanks to Alexis Le Pichon for the Garce`s ray tracing software called HAWAI and to Maud Barthelémy for a preliminary work. Careful reviews by Juliette Artru and Bernard Minster have improved the manuscript. Partial financial support has been provided by DASE/CEA through contract n° 460009 3805/P6H53. Contribution Géosciences Azur n° 536.

References

Abdullayev, S. (1993), Chaos and Dynamics of Rays in Waveguide Media, Gordon and Breach, Newark, N. J.

Figure 4. Amplitude variation and ray tracing without and with horizontal winds. On both panels, top box is the amplitude estimation while bottom box shows rays. Paraxial and numerical rays should overlap the central ray because angle increment is very small. Arbitrarily, the distance between these rays and the central ray has been amplified: caustic, detected when paraxial/numerical ray crosses the central ray, is shifted from 225 km to 325 km distance. Numerical amplitude estimations are quite accurate except near caustic zones where paraxial approach leads to superior results.

when ground stations are away from caustics. Therefore, one may hope to recover source features when these mean decays are correctly modelled by ray tracing on a significant number of ground stations in order to avoid caustic artefacts.

7. Conclusion

[22] The Hamiltonian formulation allows a systematic description of rays in the windy atmosphere. We have included non-homogeneous wind and sound velocities distributions in our formalism and we have constructed the two-dimensional numerical solution.

[23] We have estimated the geometrical variations of amplitude using the paraxial estimation rather than numerical differentiation between two neighbouring rays. Lateral variations of both the sound and the wind turn out to introduce noticeable modifications in the ray tracing itself as well as in the amplitude variation.

[24] We expect this amplitude estimation while tracing rays of great importance for non-linear estimation of sound velocity when it depends on the acoustic vibration itself. We

E. Blanc, Laboratoire de Détectio et de Géophysique, Commissariat à l’Energie Atomique, Bruyères le Châtel, France.

N. Garnier, Laboratoire de Physique, École Normale Supérieure, Lyon, France.

J. Virieux, UMR-Geosciences Azur, Université de Nice-Sophia Antipolis, 250 Rue Albert Einstein, F-06560 Valbonne, France. (viri@geoazur.unice.fr)